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In the present study, the geometrically nonlinear vibrations of circular cylindrical shells,

subjected to internal fluid flow and to a radial harmonic excitation in the spectral

neighbourhood of one of the lowest frequency modes, are investigated for different flow

velocities. The shell is modelled by Donnell’s nonlinear shell theory, retaining in-plane

addition of unsteady viscous terms obtained by using the time-averaged Navier–Stokes

equations. A harmonic concentrated force is applied at mid-length of the shell, acting in

the radial direction. The shell is considered to be immersed in an external confined

quiescent liquid and to contain a fluid flow, in order to reproduce conditions in previous

water-tunnel experiments. For the same reason, complex boundary conditions are applied

at the shell ends simulating conditions intermediate between clamped and simply

supported ends. Numerical results obtained by using pseudo-arclength continuation

methods and bifurcation analysis show the nonlinear response at different flow velocities

for (i) a fixed excitation amplitude and variable excitation frequency, and (ii) fixed

excitation frequency by varying the excitation amplitude. Bifurcation diagrams of Poincaré

maps obtained from direct time integration are presented, as well as the maximum

Lyapunov exponent, in order to classify the system dynamics. In particular, periodic, quasi-

periodic, sub-harmonic and chaotic responses have been detected. The full spectrum of the

Lyapunov exponents and the Lyapunov dimension have been calculated for the chaotic

response; they reveal the occurrence of large-dimension hyperchaos.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Shells containing flowing fluids may be found in many engineering and biomechanical systems. Most of these systems
are made of thin circular cylindrical shells designed for weight economy and cost management. However, for thin shells,
vibrations are a major problem due to excitations of many kinds, including flow-induced excitations. In most previous
studies, linear shell theory has been used to describe the oscillation of thin shells coupled to a flowing fluid, which is
accurate only for vibration amplitudes significantly smaller than the shell thickness.

One of the first complete studies on the dynamics of shells conveying fluid was by Paı̈doussis and Denise [1] for both
clamped and cantilevered shells subjected to axial flow; a travelling-wave type solution was utilized, nevertheless
satisfying the pertinent boundary conditions, along with a separation of variables method to solve the boundary value
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problem for linear fluid–structure interaction. Weaver and Unny [2], on the other hand, investigated the stability of simply
supported shells by means of the Fourier transform method. Paı̈doussis et al. [3] extended this method to coaxial
cylindrical shells. Systematic research in this area has been conducted by Paı̈doussis and it is synthesized in his monograph
[4]. Horáček and Zolotarev [5] investigated the effect of different boundary conditions at the shell ends. The effects of
boundary conditions and fluid viscosity were investigated further by Amabili and Garziera [6,7]; the effect of the boundary
conditions and shell tapering were studied by Ugurlu and Ergin [8]. Anisotropic shells coupled to flowing fluid were
considered by Toorani and Lakis [9–11]. Finite element models to study linear vibration of cylindrical shells conveying fluid
were developed by Zhang et al. [12,13]. In the literature discussed here, not only the shell stability but also the dependence
of the natural frequencies of the shell on the flow velocity has been investigated.

The literature related to nonlinear studies of shells coupled to flowing fluid is not large. Selmane and Lakis [14] studied
the large amplitude vibration of shells with flow. They considered the nonlinear free vibrations of open and closed circular
cylindrical shells with fluid flow by using a hybrid finite element method. The formulation is based on the nonlinear
Sanders-Koiter shell theory, so that structural nonlinearities are taken into account. Results have been obtained for free
nonlinear vibrations of an open circular cylindrical shell with flowing fluid.

In a series of papers, Amabili, Pellicano and Paı̈doussis [15–18] systematically studied the nonlinear dynamics, stability
and large-amplitude vibrations of simply supported, circular cylindrical shells, with quiescent or flowing fluid. In the last
paper of the series [18], they investigated the nonlinear vibrations of a simply supported, circular cylindrical shell
containing flowing fluid and subjected to harmonic excitation, by using a model with seven degrees of freedom. Potential
flow theory and Donnell’s nonlinear shallow-shell theory were used to model the flow and the shell, respectively.

The stability of circular cylindrical shells conveying or immersed in flowing fluid was studied by Amabili, Pellicano and
Paı̈doussis [15,19,20]. For the first time it was found that circular cylindrical shells become unstable through a strongly
subcritical pitchfork bifurcation; this means that shells can diverge statically (buckle) due to fluid flow, much before the
stability threshold predicted by linear stability calculations is reached. Karagiozis et al. [21,22] confirmed these findings by
comparing numerical and experimental results; experiments in a water tunnel were appositely performed in order to
validate the theory. The same findings were confirmed by using more accurate shell theories by Amabili et al. [23]; the
effect of geometric imperfections was also investigated.

Computer programs based on the finite-element method (FEM) have been used to model arterial and capillary vessels
(modelled with shell elements) conveying blood flow (see e.g. Bathe and Kamm [24]). However, FEM simulations of
nonlinear dynamics and the stability of similar problems are still far from reliable.

The literature on nonlinear vibrations of circular cylindrical shells not coupled to flow is quite abundant; it has been
reviewed by Amabili and Paı̈doussis [25]. An introduction and state-of-the-art is given in the monograph by Amabili [26];
here, only a few studies are reviewed, specifically those related to the present study. Amabili [27] investigated the effect of
geometric imperfections on nonlinear vibrations of circular cylindrical shells containing still water and compared
calculations and experiments, thus validating the theory. More accurate shell theories have been used by Amabili [28] to
study the same problem. Results show that, for water-filled shells, the Donnell’s nonlinear shell theory gives very accurate
results for thin shells, provided the in-plane inertia is taken into account. Chaotic vibrations of spherical shells were
studied by Soliman and Gonc-alves [29], while complex nonlinear dynamics of circular cylindrical shells was investigated
by Amabili et al. [30].

In the present study, the geometrically nonlinear vibrations of circular cylindrical shells, subjected to internal fluid flow
and to a radial harmonic excitation in the spectral neighbourhood of one of the lowest frequency modes, are investigated
for different flow velocities. The shell is modelled by using the form of Donnell’s nonlinear shell theory retaining in-plane
inertia; the fluid is modelled as a potential flow, yet taking into account additional unsteady viscous terms obtained via the
time-averaged Navier–Stokes equations. A harmonic concentrated force applied at mid-length of the shell and acting in
radial direction is assumed. The shell is considered to be immersed in a confined external quiescent liquid and to contain a
fluid flow, in order to be able to compare with previous water-tunnel experiments [22,23]. For the same reason, complex
boundary conditions are applied at both ends of the shell; modelling conditions ranging from simply supported to clamped
ends. Numerical results obtained by using the pseudo-arclength continuation method and bifurcation analysis give the
nonlinear response at different flow velocities for (i) fixed excitation amplitude and varying excitation frequency, and (ii)
fixed excitation frequency and varying excitation amplitude. Bifurcation diagrams of Poincaré maps obtained from direct
time integration are presented, as well as the maximum Lyapunov exponent, in order to classify the system dynamics. As
will be seen, periodic, quasi-periodic, sub-harmonic and chaotic responses have been detected. The full spectrum of the
Lyapunov exponents and the Lyapunov dimension have been calculated for the chaotic response, demonstrating the
occurrence of hyperchaos. The present study extends the model previously developed by the same authors [23] for
studying the nonlinear behaviour of the system subjected to external excitation.
2. Shell and fluid–structure interaction models

Fig. 1 shows the system under consideration. It consists of a thin circular cylindrical shell of length L, mean radius R, and
thickness h, such that h=R51. The origin of the cylindrical coordinate system,ðO; x,r,yÞ, is positioned at the centre of one
end of the shell. The shell is assumed to be of homogeneous, isotropic elastic material of Young’s modulus E and Poisson’s
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Fig. 1. Shell geometry, boundary conditions (translational and rotational springs) and coordinate system.
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ratio n. The displacements of the shell middle surface are denoted by u, v and w, in the axial, circumferential and radial
directions, respectively; w is taken positive outward. Only radial initial imperfections are considered in this study
neglecting locked-in initial stresses. These geometrical imperfections are directly associated with zero initial tension and
they are represented by an inward displacement w0. The shell contains an internally flowing fluid, is immersed in a
quiescent external fluid, and is subjected to an external harmonic excitation force, as indicated in Fig. 1.

In the following sub-sections, the model is synthesized; some of the details of the basic model—without force
excitation—may be found in [23].

2.1. Structural model

The following boundary conditions are imposed at the shell ends (see Fig. 1):

v¼w¼w0 ¼ 0, at x¼ 0,L, (1a2c)

Nx ¼�kau, at x¼ 0,L, (1d)

Mx ¼�krð@w=@xÞ, at x¼ 0,L, (1e)

where Nx is the axial stress resultant per unit length, Mx is the bending moment per unit length, ka is the stiffness per unit
length of the elastic, distributed axial springs at x=0 and L and kr is the stiffness per unit length of the elastic, distributed
rotational springs at x=0 and L. Moreover, u, v and w must be continuous in y. The boundary conditions (1a,b) restrain the
radial and circumferential shell displacements at the two edges. Eq. (1d) gives the elastic axial constraint at the shell edges.
Different values of the axial spring ka are assumed for asymmetric (ka1) and axisymmetric (ka2) vibration modes in the
numerical calculations in order to simulate experimental boundary conditions. Eq. (1e) represents an elastic rotational
constraint at the shell edges. It gives any rotational constraint from zero moment (Mx=0, unconstrained rotation) to a
perfectly rotationally clamped shell (@w=@x¼ 0, obtained as limit for kr-1), according to the value of kr. For not very short
thin shells, the axial spring ka plays a much larger role than the rotational spring kr, as indicated in [31].

The displacements u, v and w can be expanded to facilitate discretization of the equations by using the following
expressions, which identically satisfy boundary conditions (1a,b):

uðx,y,tÞ ¼
X5

m ¼ 1

½um,n,cðtÞcosðnyÞþum,n,sðtÞsinðnyÞ�cosðlmxÞþ
X3

m ¼ 1

um,2n,cðtÞcosð2nyÞcosðlmxÞþ
X4

m ¼ 1

u2m�1,0ðtÞcosðl2m�1xÞ,

(2a)

vðx,y,tÞ ¼
X5

m ¼ 1

½vm,n,cðtÞsinðnyÞþvm,j,sðtÞcosðnyÞ�sinðlmxÞþ
X4

m ¼ 1

vm,2n,cðtÞsinð2nyÞsinðlmxÞ, (2b)

wðx,y,tÞ ¼
X3

m ¼ 1

½wm,n,cðtÞcosðnyÞþwm,n,sðtÞsinðnyÞ�sinðlmxÞþ
X4

m ¼ 1

w2m�1,0ðtÞsinðl2m�1xÞ, (2c)
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where n is the circumferential wavenumber, m is the number of longitudinal half-waves, lm ¼mp=L, and t is the time;
um,n(t), vm,n(t) and wm,n(t) are the generalized coordinates, which are unknown functions of t; the additional subscript c or s

indicates if the generalized coordinate is associated to a driven mode (i.e. a mode directly excited by the external
excitation) or a companion mode (a mode indirectly excited, contributing only to the system response due to nonlinear
coupling); no additional subscript is used for axisymmetric terms. Eqs. (2a–c) have been obtained for an excitation
frequency close to that of mode (n, m); therefore, generalized coordinates with a different number of circumferential waves
from those in Eqs. (2a–c) can be neglected. It must be observed that in the nonlinear case a coupling among different n

arises (e.g. in Eqs. 2(a) and 2(b)), and decoupling in the n variable is not automatic.
The number of terms in the longitudinal and circumferential direction in Eqs. (2a–c) must be selected with care in order

to obtain the required accuracy and acceptable dimension of the nonlinear problem. More terms are necessary for in-plane
than for radial displacements. Torsional axisymmetric terms are not necessary since torsional axisymmetric modes
are uncoupled from axial and radial axisymmetric modes. In Eqs. (2), terms with an even number of longitudinal waves,
i.e. m=2, are kept into the expansion since they are coupled to the odd modes in the presence of flowing fluid also in case of
small amplitude (i.e. linear) vibrations. In fact a shell conveying fluid exhibits complex modes; as a consequence, all points
on the shell do not move in phase. Results on the stability of a shell conveying water with the same boundary conditions
as considered here show a uniform convergence of the solution from two to six longitudinal modes are included [23].
The total number of degrees of freedom used in the present model is 42.

Imperfections are expanded in the following Fourier series:

w0ðx,y,tÞ ¼
XM̂

m ¼ 1

XN̂

j ¼ 0

½Am,j cosðjyÞþBm,j sinðjyÞ�sinðmpx=LÞ: (2d)

The kinetic energy of the shell is given by

TS ¼
1

2
rSh

Z 2p

0

Z L

0
ð _u2
þ _v2
þ _w2

ÞdxR dy, (3)

where rS is the mass density of the shell. The potential energy of the shell US is made up of two contributions: the elastic
strain energy Ushell of the circular cylindrical shell and the potential energy Uspring stored by the axial and rotational
distributed springs at the shell ends; therefore,

US ¼UshellþUspring: (4)

The elastic strain energy Ushell of a circular cylindrical shell is given by [26],

Ushell ¼
1

2

Z 2p

0

Z L

0

Z h=2

�h=2
ðsxexþsyeyþtxygxyÞdxRð1þz=RÞdydz, (5)

where h is the shell thickness, R the shell middle radius, L the shell length, and the stresses sx, sy and txy are related to the strains
ex, ey and exy for homogeneous isotropic material (sz=0, case of plane stress) [26]. Donnell’s nonlinear shell theory [26] retaining
in-plane inertia is used in order to evaluate Eqs. (3)–(5). The model has been developed and validated by Amabili et al. [23].

The potential energy stored by the axial and rotational springs at the shell ends is given by

Uspring ¼
1

2

Z 2p

0
ka½ðuaÞx ¼ 0�

2þka½ðuaÞx ¼ L�
2þkr

@w

@x

� �
x ¼ 0

� �2

þkr
@w

@x

� �
x ¼ L

� �2
( )

dy, (6)

where ua is the axial displacement given by Eq. (2a) without the axisymmetric terms um,0(t).

2.2. Fluid–structure interaction for inviscid fluid

The contained flowing fluid and the external quiescent fluid are assumed to be incompressible and inviscid and the flow
isentropic and irrotational, so that potential flow theory can be used to describe fluid motion. Potential flow has been
verified to give accurate results to study stability and dynamics of shells conveying fully developed water and air flow
(in the incompressible regime). Nonlinear effects in the dynamic pressure and in the boundary conditions at the fluid–
structure interface are neglected; accounting for these nonlinear effects has been shown to give negligible effects [32–34].
The shell prestress due to the fluid weight is also neglected, which is reasonable for shells that are not extremely thin. The
fluid motion is described by the velocity potential F, which satisfies the Laplace equation. A very long shell periodically
supported at L intervals is assumed in order to use the separation of variables method.

The irrotationality property is the condition for existence of a scalar potential function C, from which the velocity may
be written as

V ¼rC: (7)

By using the Green’s theorem, the total energy EF associated with the flow can conveniently be divided into three terms
with different contributions of time functions and their derivatives:

EF ¼ TFþEG�VF; (8)
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the first and second of the three terms on the right-hand side can be identified as the kinetic and gyroscopic energies,
respectively; an opposite sign is introduced for the potential energy VF, for convenience.

2.3. Fluid viscosity effect

In order to improve the potential flow model introduced in Section 2.2, the effect of steady fluid viscosity is added to the
model. The time-mean Navier–Stokes equations [23,35], are employed to calculate the fluid steady viscous effects
assuming that the flow is fully turbulent. The unsteady viscous forces [4] are neglected in this investigation. There are two
steady viscous effects: (i) a pressure drop along the shell length, so that a zero pressure differential across the shell surface
is defined at the shell mid-length, and (ii) axial friction forces distributed on the shell internal surface.

2.4. Generalized forces

In this analysis, the shell is subjected not only to flowing fluid but also to an external harmonic force excitation of
frequency o active only in the radial direction, as indicated in Fig. 1. The external localized (point) force on the shell
surface is directed inwards and is applied at a point ð ~x, ~yÞ. The excitation force in the radial direction has the following
general form:

fr ¼
~f dðRy�R ~yÞdðx� ~xÞcosðotÞ, (9)

where d is the Dirac delta function, and ~f is the magnitude of the point force. It is important to note that in the present
analysis the driving frequency (excitation frequency) is chosen to have values close to the natural frequency of the lowest
modes of the shell. The low-frequency modes are associated with predominantly radial motion and are identified by the
pair (m, n), where m is the number of axial half-waves and n is the number of circumferential waves. The external force in
Eq. (9) can be used to describe the excitation provided by an electrodynamic exciter (shaker), for instance.

The virtual work W done by the external force is written as

W ¼

Z 2p

0

Z L

0
ðfxuþ fyvþ frwÞdxR dy, (10)

where fx, fy, and fr are the distributed forces per unit area acting in the axial, circumferential and radial directions,
respectively. In our study it is assumed that fx ¼ fy ¼ 0. Therefore, Eq. (10) can be rewritten as

W ¼ ~f cosðotÞðwÞx ¼ L=2, y ¼ 0: (11)

Damping is considered to arise strictly within the shell material. It is assumed to be of the viscous type and is taken into
account by using Rayleigh’s dissipation function

F ¼
1

2
c

Z 2p

0

Z L

0
ð _u2
þ _v2
þ _w2

ÞdxR dy, (12)

where c has a different value for each term of the mode expansion. Although damping in the fluid is neglected, its overall
effect may be approximated by appropriately augmenting c. In fact, in the calculations, modal damping is utilized, which
can represent the total damping in the system.

The generalized forces Qj are obtained by differentiation of the Rayleigh’s dissipation function and of the virtual work W

done by external forces:

Qj ¼�
@F

@ _qj

þ
@W

@qj
, (13)

where @F=@ _qj ¼ cj _qj.

2.5. Lagrange equations of motion

The following notation is introduced:

q¼ fum,n,c ,um,n,s,vm,n,c ,vm,n,s,wm,n,c ,wm,n,sg
T, m¼ 1, . . . ,M and n¼ 0, . . . ,N: (14)

The generic element of the time-dependent vector q is referred to as qj. The dimension of q is N ¼ 42, which is the number
of degrees of freedom used in the mode expansion.

In the present case, the Lagrange equations of motion are rewritten as

d

dt

@ðTSþTFþEGÞ

@ _qj

" #
�
@ðTSþTFþEGÞ

@qj
þ
@ðUSþVF Þ

@qj
¼Qj, j¼ 1, . . . ,N , (15)

where TS and TF are the kinetic energy of the shell and the fluid, respectively, US and VF are the potential energy of the shell
and the fluid, respectively, EG is the gyroscopic energy, @TS=@qj ¼ 0 and @TF=@qj ¼ 0.
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3. Solution method

The 42 second-order nonlinear ordinary differential equations are divided by the modal mass and further simplified to
84 first-order differential equations using a dummy variable yj. The final set of ODEs is given in the following expressions:

_qj ¼ yj

_yj ¼�2zjojyj�
XN

i ¼ 1

zj,iqi�
XN

i ¼ 1

XN

k ¼ 1

zj,i,kqiqk�
XN

i ¼ 1

XN

k ¼ 1

XN

l ¼ 1

zj,i,k,lqiqkqlþ
~f j cosðotÞ,

for j¼ 1, . . . ,N ,

8>><
>>: (16)

where zj,i are the coefficients associated with the linear stiffness terms (transformed in the elimination of the mass from
the equations), zj,i,k are the coefficients associated with quadratic stiffness terms and zj,i,k,l are the coefficients associated
with cubic stiffness terms; zj is the modal damping ratio, which can be related to the damping coefficient c introduced in
Eq. (12) and oj is the natural frequency of the jth mode. The force amplitude ~f j takes different values according to Eq. (11)
and is equal to 0 for any generalized coordinate different than wm,n,c.

Once nondimensionalized, the resulting ODEs are studied via two numerical schemes. The first employs a continuation
method to follow both the stable and unstable solutions. The software AUTO [36] is capable of continuation of the solution,
bifurcation analysis and branch switching by using the pseudo-arclength continuation and collocation methods.
Fig. 2. Bifurcation diagram of the non-dimensional amplitude of the first driven mode w1,6,c/h versus the non-dimensional flow velocity V of a clamped

aluminium shell with internal water flow: , stable solution branches; – – – – –, unstable solution branches. A, B and C are points of interest at

V=0, 1 and 2, respectively, and LP are the limit points of the solution branches.

1

2

1

2
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LP LP LP
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BP
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TR
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quasi periodic

solution
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Fig. 3. The amplitude–frequency response of the driven and companions modes for case A, using Donnell’s theory with modal structural damping equal

to 0.005 and ~f ¼ 0:0165 N: , stable response; – – – – –, unstable response. (a) Amplitude of the driven mode; (b) amplitude of the companion

mode. TR corresponds to torus bifurcation points, LP denotes a limit point and BP represents the bifurcation points.
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In particular, for this study the shell response under harmonic excitation has been investigated in two steps: (i) first, the
excitation frequency has been fixed far enough from resonance, and the magnitude of the excitation has been used as
the bifurcation parameter; then, the solution is found, starting with zero initial conditions until the desired magnitude for
the excitation is reached; (ii) in the second step the shell has been excited at the maximum force level and the shell
amplitude is computed, using the excitation frequency now as the bifurcation parameter.
Fig. 4. The amplitude–frequency response of the driven and companions modes for different velocity cases for ~f ¼ 0:0165 N: , stable response;

– – – – –, unstable response. (a) Driven mode amplitude for case B; (b) companion mode amplitude for case B; (c) driven mode response for case C;

(d) companion mode response for case C; (e) composite of driven modes for different velocity cases; (f) composite of companion modes for different

velocity cases.
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The second numerical method involves direct time integration of the equations of motion. In this study, the DIVPAG
numerical routine from the Fortran IMSL library is used to perform the time integration. In particular, Gear’s backward-
differentiation-formula (BDF) is used to deal with the stiff nonlinear equations. The direct time integration was used to
obtain the bifurcation diagrams and Poincaré maps for the non-stationary responses. Specifically, in this case, the
maximum Lyapunov exponent was evaluated so as to identify regimes of chaotic oscillations. The next sub-section offers a
brief explanation on the methodology used to calculate the Lyapunov exponents and the Lyapunov dimension in our
numerical simulations.

3.1. Maximum Lyapunov exponent and Lyapunov dimension

Let us assume that a reference trajectory xr(t) is defined in the phase plane (q, _q plane). The evolution of a neighbouring
trajectory when an infinitesimal initial perturbation dxðt0Þ is applied to it can be used to detect the existence of chaos by
calculating the difference of the two trajectories [37]. In the present study, the evolution of the perturbation dxðtÞ is
governed by the following variational equations directly obtained from Eqs. (16):

d

dt
dqj ¼ dyj

d

dt
dyj ¼�2zjojdyj�

XN

i ¼ 1

zj,idqi�
XN

n ¼ 1

XN

i ¼ 1

XN

k ¼ 1

zj,i,kdqnðdk,nqiþdi,nqkÞ�
XN

n ¼ 1

XN

i ¼ 1

XN

k ¼ 1

XN

l ¼ 1

zj,i,k,ldqnðdi,nqkqlþdk,nqiqlþdl,nqkqiÞ,

8>>>><
>>>>:

(17)
Fig. 5. Shell response for the first asymmetric driven and companion modes and the second asymmetric driven mode as the force amplitude is increased

for o/o1,6=1.0 and V=1: , stable periodic solutions, – – – – –, unstable solutions; (a) first asymmetric driven mode, (b) first asymmetric

companion mode, (c) asymmetric driven mode with two longitudinal half-waves. LP denotes limit points, and BP denotes bifurcation points on the

diagrams.
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where j¼ 1, . . .N , dk,n is the Kronecker delta. The numerical integration for Eq. (17) is performed using the DIVPAG Fortran
routine; however, the set of equations given in (16) are integrated using an adaptive step-size fourth/fifth order Runge–
Kutta method. Steady-state responses are found by ensuring a sufficient number of steps in the numerical integration. For
example, to find a reference trajectory, 5�106 steps are skipped in order to eliminate the transient in (16) and 1�106

steps are skipped to eliminate the transient in the variational Eqs. (17). Then, 1�106 steps are used to evaluate the
Lyapunov exponent with an initial perturbation of order 1, which is given by

s1 ¼ lim sup
t-1

1

t
lnjdxðtÞj: (18)

Then the maximum Lyapunov exponent is calculated by re-normalizing the amplitude of dxðtÞ using dxðtÞk ¼ dxðtÞk=dk,
where jdxðtÞjk ¼ dk, at each integration step k, obtaining the following expression:

s1,k ¼
1

kDt

Xk

i ¼ 1

ln di: (19)

The Fortran computer program developed to calculate 2� N numbers designating the spectrum of the Lyapunov
exponents is described and validated in Ref. [38]. In particular, 1�107 steps have been used to evaluate the Lyapunov
exponents (i.e., 10 times more steps than used in the calculation of the maximum Lyapunov exponents during the
numerical integration for the bifurcation diagrams).

To identify the order of chaos in a non-stationary response, a measure of the strangeness of an attractor in the phase-
portrait domain must be established by evaluating its fractal dimension. One of the most common fractal dimension
indicators is the well-known Lyapunov dimension. The Lyapunov dimension indicates the number of effective independent
variables that determines the long-term behaviour of the system. Thus, if the non-stationary response of a deterministic
Fig. 6. Bifurcation diagram of Poincaré maps obtained while increasing the force amplitude from 0 to 14.0 N with o/o1,6=1.0 and V=0. (a) Bifurcation

diagram for the first driven mode; (b) bifurcation diagram of the first companion mode; (c) bifurcation diagram of the second modes; (d) bifurcation

diagram of the third driven mode. SH corresponds to sub-harmonic responses and C denotes chaotic oscillations.
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Fig. 7. Maximum Lyapunov exponent and Poincaré maps for the fundamental driven mode when the force is increased to 14.0 N with o/o1,6=1.0 and

V=0. (a) The maximum Lyapunov exponent; (b) Poincaré map for the fundamental driven mode for ~f ¼ 12:2 N.

Fig. 8. Bifurcation diagram of Poincaré maps obtained while decreasing the force amplitude from ~f ¼ 10:0 to 0 N with o/o1,6=1.0 and V=0. Bifurcation

diagrams for (a) the first driven mode; (b) the first companion mode; (c) the second modes; (d) the third driven mode. Q denotes quasi-periodic responses

and C chaotic oscillations.
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system is characterized by stable or unstable attractors at steady state, then the order of that steady-state response is given
by the fractal dimension [26]. The Lyapunov dimension is evaluated from [26]

dL ¼ sþ
Xs

r ¼ 1

sr=jssþ1j, (20)

where the Lyapunov exponents are ordered by their magnitude, and s is obtained by satisfying the following conditions:

Xs

r ¼ 1

sr 40 and
Xsþ1

r ¼ 1

sr o0: (21)

4. Numerical results

Numerical calculations are presented for an aluminium shell having the following dimensions and material properties:
L=0.1225 m, R=0.041125 m, h=0.000137 m, rs=2720 kg/m3, n=0.33 and E=70�109 Pa; such a shell was previously tested
experimentally, as described in [21–23]. The assumed stiffness of axial and rotational distributed springs at x=0 and L are
ka1=1�107 N/m2, ka2=1�105 N/m2 and kr=0.3�103 N/rad. In the experiments, the shell was glued to solid rings at its two
ends with epoxy glue, but the rings were attached to the water tunnel via less stiff silicone glue. Consequently, in the
analytical model, the axial springs ka1 restraining symmetric modes are taken to be much stiffer than ka2 restraining
axisymmetric modes. In this way, a boundary condition intermediate between simply supported and clamped ends is
obtained. Water is both the contained flowing fluid and the external quiescent liquid, with mass density rF=1000 kg/m3.
The external quiescent water is confined by a solid cylinder with internal radius of 0:1015 mC2:5R.

A non-dimensional fluid velocity V ¼U=fðp2=LÞ½D=ðrhÞ�1=2g is introduced for convenience, defined as in [2], where U is
the flow velocity and D¼ Eh3=½12ð1�n2Þ�. For the parameter values given above, the physical flow velocity is obtained by
U=17.12V. A zero differential pressure, measured at the shell mid-length, is assumed across the shell wall.
Fig. 9. Maximum Lyapunov exponent and limit cycles when the force is decreased from 10.0 N to zero with o/o1,6=1.0 and V=0. (a) The maximum

Lyapunov exponent; (b) three-dimensional phase-space plots for different load values for the first driven mode; (c) three-dimensional phase-space plots

for different load values for the first companion mode.
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The critical circumferential wavenumber observed at divergence in the experiments was n=6 [21–23], which is the first
mode reaching divergence. Therefore, all the theoretical results presented in this paper are for n=6, for which the natural
frequency at zero flow velocity (V=0) is o1,6=184.6 Hz. This value decreases with flow; thus, for V=1, o1,6=177.85 Hz, and
for V=2, o1,6=155.76 Hz. Moreover, with fluid flow, the vibration modes are no longer the classical natural modes but they
become complex. A damping ratio z1,6=0.005 is utilized in all the calculations.
Fig. 10. Bifurcation diagram of Poincaré points for increasing the force amplitude from ~f ¼ 0 to 17.0 N with o/o1,6=1.0 and V=1. (a) Bifurcation diagram

for the driven mode; (b) bifurcation diagram of the companion mode; (c) bifurcation diagram of the second driven mode; (d) bifurcation diagram of the

second companion mode; (e) bifurcation diagram of the third driven mode. C denotes the chaotic response of the system.



ARTICLE IN PRESS

K. Karagiozis et al. / Journal of Sound and Vibration 329 (2010) 3813–3834 3825
4.1. Divergence of shell conveying fluid

Fig. 2 is the stability (bifurcation) diagram for the aluminium shell in a plot giving the amplitude of the first generalized
coordinate w1,6,c versus the non-dimensional flow velocity, obtained via the AUTO software [36]. As the flow velocity
increases, the shell remains undeformed (w1,6,c=0) until the pitchfork bifurcation at V=3.69, at which point the system
loses stability by static divergence according to linear theory. The solution bifurcates into two unstable branches; these
branches fold at V=1.28 and become stable thereafter. As shown for the first time in [15] for simply-supported shells, and
later by Karagiozis et al. [22] for clamped shells, there is a range of flow velocities between the point of the linear onset of
instability and the folding point in which the shell may jump from its undeformed state to a deformed state of large
amplitude if sufficiently perturbed. The perturbation may be in the form of an external force acting on the shell wall or it
may be a flow perturbation. In our case, this critical flow range is quite enormous: over 65% of the range ð1:28rV r3:69Þ
from zero flow velocity to the point of linear loss of stability! It is therefore quite clear that, as perturbations are ubiquitous
in real systems, nonlinear analysis must always be performed in the design of such systems for engineering application.
4.2. Frequency–amplitude response

To study the forced response of the aluminium shell, three specific non-dimensional velocities V=0, 1 and 2 have been
chosen, corresponding to the points A, B and C, respectively, in the bifurcation diagram Fig. 2. A harmonic point force
excitation is applied in the radial direction on the shell surface at ~x ¼ L=2 and ~y ¼ 0. Here the forced response is obtained
spanning the frequency range around the fundamental resonance. Point A is far short of the range of instability (V=0).
The difference between cases B and C is that point B lies before the folding points (LP in Fig. 2), thus only one stable
solution on branch 1 exists, namely that of zero shell deformation, while for point C there are at least three stable solutions
available (the zero amplitude solution and the two stable branch 2 solutions).

Figs. 3 and 4 show forced reponses for points A, B and C, along with additional cases for different flow velocities, as plots
of the non-dimensional vibration amplitude of the shell versus the excitation frequency. The magnitude of the external
force was set to a relatively small value: 0.0165 N. In all cases the shell exhibits a softening type of nonlinearity, as
expected [18,20], which is more pronounced as the flow velocity is increased. These results were obtained using the AUTO
97 software package.

For case A, see Fig. 3, the excitation frequency is increased gradually and the amplitude of the vibration is increased
accordingly following the stable solution branch 1 until it reaches the first limit point (denoted at LP on the plot) and
becomes unstable at o=o1,6 � 0:985. The unstable solution of branch 1 becomes softening and its amplitude increases with
decreasing the excitation frequency until it reaches a value very close to the peak vibration amplitude value. For a small
region at the peak it becomes stable between 0:977oo=o1,6o0:978 only to lose stability again right after the peak of the
curve and keep decreasing in amplitude with increasing the excitation frequency. At about o=o1,6 � 1:002 the branch 1
solution loses stability and a new solution branch denoted by number 2 is developed. This pitchfork bifurcation point
(BP on the plot) gives rise to unstable solutions for branch 1, where only the driven mode is active (the companion mode is
zero). It also gives rise to an initially stable branch 2 with companion mode participation (as shown in Fig. 3(b)). It is
interesting to note that the stable branch becomes quiasi-periodic through two Neimark-Sacker (torus) bifurcations at
Fig. 11. Maximum Lyapunov exponent and Poincaré maps for the fundamental driven mode when the force ~f is increased to 17.0 N with o/o1,6=1.0 and

V=1. (a) Maximum Lyapunov exponent versus the dynamic load; (b) Poincaré map for the fundamental driven mode for ~f ¼ 15:83 N.
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o=o1,6 ¼ 0:991 and o=o1,6 ¼ 0:98039 (denoted as TR in the figure), therefore the response is quasi-periodic vibrations in
the frequency range 0:98039oo=o1,6o0:991. For excitation frequencies larger than o=o1,6 ¼ 1:002 only the stable
solution 1 branch of the driven mode is active with zero participation from the companion mode as shown in Fig. 3.

The results for cases B and C are shown in Figs. 4(a, b) and (c, d), respectively. As the flow velocity increases, the region
for quasi-periodic responses also increases. It is also noted that, as the flow velocity increases, the quasi-periodic solution
branch (branch 2 between the two torus bifurcation points) interferes with the unstable branch 1 (unstable solution
between the limit points) allowing for amplitude-modulated responses. In addition, for higher flow velocities the
Fig. 12. Bifurcation diagram of Poincaré points for decreasing ~f from 17.0 to 0 N with o/o1,6=1.0 and V=1. Bifurcation diagrams for (a) the driven mode,

(b) the companion mode, (c) the second driven mode, (d) the second companion mode, and (e) the third driven mode. C denotes the chaotic oscillations of

the system.
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companion mode is activated in a wider range of excitation frequencies. Figs. 4(e) and (f) present frequency–amplitude
results for different non-dimensional flow velocities ranging from 0 to 3. The results indicate that for flow velocities
smaller than the folding point value (from Fig. 2) the results are almost indistinguishable. However, for higher flow
velocities the results exhibit a strong softening behaviour, enhanced by increasing the flow velocity.

4.3. Force–amplitude response

In this case, the continuation parameter is the force amplitude, while the frequency is kept constant at resonance.
The amplitude of the excitation force ~f was varied from 0 to 1.32 N for V=1. Fig. 5 summarizes the results for the first
asymmetric driven and companion modes and for the second asymmetric driven mode; the non-dimensional amplitude of
these modes is plotted versus the amplitude of the excitation force. The results indicate that, as the force reaches a critical
value, the system undergoes a pitchfork bifurcation, rendering the solution of branch 1 unstable. A new stable branch 2
solution is generated. If the amplitude of the force is increased further, branch 1 reaches limit point folds and becomes
stable exhibiting a strong subcritical behaviour. In Fig. 5(b), it is shown that companion mode participation is activated on
branch 2.

It is interesting to see that the effect of the second longitudinal asymmetric mode in the solution is negligible for branch
2; however, it becomes important for a range of force amplitudes on branch 1, as shown in Fig. 5(c).

4.4. Bifurcation diagrams of Poincaré maps

In this section, the system dynamics with increasing excitation force is examined via direct numerical integration, thus
overcoming the limitations of the AUTO software and being able to see sub-harmonic, quasi-periodic and chaotic
responses. Specifically, the DIVPAG Fortran routine was used to integrate the equations of motion, for the three flow
velocities corresponding to points A, B and C of Fig. 2, i.e. for V=0, 1 and 2.

It was desired to obtain results with companion mode participation, so that the rich dynamics of the shell could also be
captured as a function of time. With the aid of the results from Figs. 3 and 4, and specifically identifying the ranges of
frequency when the companion mode participates with non-zero values, six different simulations were conducted with the
excitation frequency set at o=o1,6 ¼ 1:00. The simulations were done for a non-dimensional force range of 0–14 N (or up to
17 N for case B) with 200 frequency steps; at each step, a Poincaré map and the maximum Lyapunov exponent were
calculated. This required a large computational effort, and the computer codes had to be optimized for speed,
computational cost and accuracy.

Fig. 6 shows sections of the bifurcation diagram of Poincaré maps for case A (refer to Fig. 2) as plots of the non-
dimensional amplitude of the first few modes versus the magnitude of the external force as it was increased from 0 to 14 N.

The results for the first driven mode (Fig. 6(a)) indicate that there is a region of interest between 3.37145 and 3.7610 N
in which the period of shell oscillations increases and sub-harmonic responses are observed for ~f close to 3.761 N (labelled
Fig. 13. Maximum Lyapunov exponent versus the dynamic load when the force is decreased from ~f ¼ 17:0 to 0 N with o/o1,6=1.0 and V=1.
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as SH in Fig. 6). Another interesting region occurs for ~f ¼ 6:03 N; for this amplitude of ~f the shell amplitude changes sign:
from a negative value to a large positive value. This indicates that there is a change in phase of the response of the system
(1801). For ~f ¼ 10:9447 N or higher the shell response is chaotic with some sub-harmonic (SH) windows, as shown in
Fig. 6(a). The Lyapunov exponents in the chaotic regions are very large. This is shown in Fig. 7(a), displaying the maximum
Lyapunov exponent versus dynamic load. In this case, the second longitudinal asymmetric mode m=2 (for both driven and
companion modes) is not activated, as shown in Fig. 6(c). However, all other modes are fully activated in the chaotic
oscillations. The Lyapunov dimension in this case was calculated to be 55.78 for ~f ¼ 12:2 N, indicating a very large
hyperchaos. Fig. 7(b), shows the Poincaré map for this value of ~f .

The hysteresis on the onset and cessation of hyperchaos for case A, depending on whether the dynamic load is increased
or decreased during the simulation, can be detected by comparing Figs. 6 and 8. The results in Fig. 8 were obtained for the
same system with V=0 shown in Fig. 6, but the initial value for the force excitation was set to 10 N and was gradually
diminished to zero in small steps. Comparing Figs. 6(a) and 8(a) reveals that there is a hysteresis in the cessation of the
chaotic oscillations (chaos appeared when ~f =10.9447 N in Fig. 6 and 9.59 N in Fig. 8). This is an interesting nonlinear result
Fig. 14. Plot of all the Lyapunov exponents. (a) Case A with V=0 and ~f ¼ 12:2 N; (b) case B when V=1 and ~f ¼ 15:83 N.
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which emphasizes the complexity of the system when both the driven and companion modes coexist with non-zero
amplitudes. Similarly, as in Fig. 6(c), the second asymmetric mode amplitude remains zero throughout the run, as shown in
Fig. 8(c). The results in Fig. 8 show a very interesting dynamic system behaviour, with chaotic and sub-harmonic responses
along with changes in the phase response of the system as indicated in Figs. 8 and 9(b,c). The maximum Lyapunov
exponent is also very large indeed for ~f 49:6 N, as shown in Fig. 9.

Results for case B (V=1), when ~f is steadily increased from 0 to 17 N, are shown in Fig. 10. The results in Fig. 10(a) for the
first driven mode show that there is a complex periodic response with jumps and phase changes along with sub-harmonic
Fig. 15. Bifurcation diagram of Poincaré points for increasing the force amplitude from 0 to 7.26 N with o/o1,6=1.0 and V=2. Bifurcation diagrams for

(a) the first driven mode, (b) the first companion mode, (c) the second driven mode, (d) the second companion mode, and (e) the third driven mode.
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responses for low excitation values. The first companion mode, shown in Fig. 10(b), goes through similar intervals of sub-
harmonic response for low excitation load values. For higher excitation values the system becomes chaotic. In contrast to
case A (where V=0), here the second asymmetric mode, w2,6,cðtÞ, is activated when the system becomes chaotic; both
driven and companion components of the second mode are very active, contributing large displacements when the system
experiences chaos. Therefore, the presence of a flowing fluid vis- �a-vis a quiescent one (V=0) is quite important; it amplifies
the complexity of the system response.

The chaotic nature of the system can be seen in Fig. 11(a), in a plot of the maximum Lyapunov exponent versus the
excitation force magnitude, ~f . Around ~f ¼ 15:7 N the Lyapunov exponent becomes very large and positive. The Poincaré
map is shown in Fig. 11(b) for ~f ¼ 15:83 N.

Once more, as for V=0, the hysteresis in the onset of chaotic oscillations was investigated by initializing the system with
a dynamic load value of 17 N, and then decreasing it to zero. In Fig. 12(a), the response of the first driven asymmetric mode
shows that the chaotic oscillations become simple periodic responses for fro15.05 N. Looking at Figs. 10(a) and 12(a) and
comparing with the results for V=0, we can see that the hysteresis in the occurrence and cessation of chaos is smaller than
in case of V=1. For smaller values of ~f the system undergoes a change in phase, as indicated in Figs. 12(a) and (b) for the
first driven and companion mode components. In this case also, the second asymmetric mode participates in the chaotic
oscillations with large amplitude for both the driven and companion modes, as shown in Figs. 12(c) and (d). The maximum
Lyapunov exponents, shown in Fig. 13, are again large positive numbers for ~f 415:5; obviously indicating chaotic
behaviour.

The Lyapunov spectrum (i.e. all the Lyapunov exponents) for cases A (V=0) and B (V=1) is shown in Fig. 14. In both cases
the Lyapunov dimension is high, thus proving the existence of hyperchaos. For case B the Lyapunov dimension is 82.97 for
~f ¼ 15:83 N, indicating that the dimension is larger for the system in the presence of fluid flow.

For case C (V=2) the bifurcation diagrams are shown in Fig. 15. The first driven mode is shown in Fig. 15(a). As the load
values increase, the system jumps from a small stable response to larger amplitude corresponding to the divergence
(buckled) deformation of the shell, as discussed in connection with Fig. 2. It is interesting to note that for a dynamic load
~f ¼ 3:6 N the system exhibits sub-harmonic response before jumping to an attractive well solution of very large amplitude.
This is true because case C corresponds to a point that lies on the right of the two folding points of branches 2 in the
stability results of Fig. 2. Therefore, the attractiveness of the two stable branches (branches 2 in Fig. 2) is large and they
capture the shell vibration for ~f ¼ 3:648 N. This is different from the behaviour for flow velocity values that are smaller than
the folding point velocities shown in Fig. 2. The first companion mode also exhibits the complicated sub-harmonic
responses for lower force values, but it becomes zero at divergence. The second mode behaviour is also complicated, as
shown in Fig. 15(c) and (d). The sub-harmonic response is clearly present; however, the response becomes more
complicated with additional jumps. The response of the third driven mode, shown in Fig. 15(e), is also complicated.

The quasi-periodic regions indicated in Fig. 15(a) can also be seen in the maximum Lyapunov exponent diagram in
Fig. 16. The spikes at smaller load values and in the region 3:6o ~f o3:648 N indicate the quasi-periodic regions. However,
Fig. 16. The maximum Lyapunov exponent versus the dynamic load values for V=2 (case C) with o/o1,6=1.0 when the force amplitude is increased from

zero to ~f ¼ 7:26 N.
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no chaotic oscillations can be observed for the investigated value of the excitation force. It is important to observe that
once buckling of the shell is reached at ~f ¼ 3:648 N, just periodic responses are observed. In order to observe chaotic
response, it is necessary to reach values for ~f close to 100 N, i.e. a very large force is necessary to have chaotic vibrations of
the buckled shell. In fact, the buckled shell is stiffer than the undeformed shell, so that it has a natural frequency higher
than o1,n and therefore it is away from resonance for excitation frequency o=o1,6 ¼ 1:00.
Fig. 17. Bifurcation diagram of Poincaré points for increasing the force amplitude from 0 to 17.0 N with o/o1,6=0.95 and V=1. Bifurcation diagrams for

(a) the first driven mode, (b) the second companion mode, (c) the second driven mode, (d) the second companion mode, and (e) the third driven mode.

Q denotes the quasi-periodic response of the system and C the chaotic oscillations of the shell.
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Additional calculations for the same system with a flow velocity V=1 and excitation frequency equal to o=o1,6 ¼ 0:95
are shown in Fig. 17. It is evident that the system undergoes complicated changes in its response in this case, involving
periodic, sub-harmonic, quasi-periodic and chaotic oscillations. In this case also, the second mode (when m=2 for the
driven and companion modes) makes a large contribution to the total displacement when the system is chaotic. In contrast
to the cases with o=o1,6 ¼ 1:00, here chaos appears also for smaller dynamic force values. This is verified in the maximum
Lyapunov exponent plot in Fig. 18, where the exponents become large positive numbers even for smaller force values. The
complicated response is better shown in Fig. 19 where the first driven mode is plotted as a three-dimensional bifurcation
diagram. Finally, in Fig. 20 the complicated sub-harmonic and chaotic response of the first driven mode is shown for
different load values.

5. Conclusions

In this paper the complex nonlinear dynamic behaviour of shells conveying fluid under external radial harmonic
excitation is investigated. It is shown that a shell conveying fluid can display periodic, quasi-periodic and chaotic
responses, depending on the flow velocity, amplitude and frequency of the harmonic excitation. However, if the flow
Fig. 18. The maximum Lyapunov exponent versus the dynamic load values for V=1 o/o1,6=0.95 when the force amplitude is increased from zero to
~f ¼ 17:0 N.

Fig. 19. Three-dimensional response diagram for the first driven mode results, for each increment of the dynamic load for V=1 and o/o1,6=0.95.
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Fig. 20. Phase-space plot for the first driven mode, showing complicated responses for different dynamic load values. (a) First driven mode for dynamic

load values 4:726o ~f o5:4726 N; (b) multi-periodic response for ~f ¼ 3:399 to 3.979 N; (c) chaotic response for ~f ¼ 0:0829 to 0.65829 N.
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velocity is higher than the folding points detected in the stability diagram (V=1.28 in the case investigated numerically),
then the harmonically excited shell will easily jump to the bifurcated solution, and in the particular case studied this
occurs without any chaotic behaviour; however, sub-harmonic responses are observed before the jump. On the other hand,
once the shell is buckled, chaotic nonlinear dynamics can arise, but this occurs only for very large excitations.

For flow velocities below the folding point in the stability diagram, the shell exhibits hysteretic chaotic behaviour; i.e.
reducing the excitation force, chaos is obtained for smaller excitations than when increasing the excitation force. It is also
shown that the second asymmetric mode (m=2) is important since it actively participates in the hyperchaotic oscillations,
contributing to shell deformation with large amplitudes in both the driven and companion modes. Thus, the response is
substantially different in the presence of flow in the shell.
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